
Package: gradethis (via r-universe)
October 30, 2024

Type Package

Title Automated Feedback for Student Exercises in 'learnr' Tutorials

Version 0.2.14

Description Pairing with the 'learnr' R package, 'gradethis' provides
multiple methods to grade 'learnr' exercises. To learn more
about 'learnr' tutorials, please visit
<https://rstudio.github.io/learnr/>.

License MIT + file LICENSE

URL https://pkgs.rstudio.com/gradethis/,

https://rstudio.github.io/learnr/,

https://github.com/rstudio/gradethis

BugReports https://github.com/rstudio/gradethis/issues

Depends R (>= 3.2.0)

Imports checkmate, commonmark, ellipsis, glue, htmltools, learnr (>=
0.10.1.9008), lifecycle, magrittr, purrr, rlang, rstudioapi,
utils, waldo, withr

Suggests DBI, ggcheck (>= 0.0.5), ggplot2, knitr, rmarkdown, spelling,
testthat (>= 3.0.0)

VignetteBuilder knitr

Remotes rstudio/ggcheck, rstudio/learnr

Config/Needs/connect rsconnect

Config/Needs/coverage covr

Config/Needs/website pkgdown, tidyverse/tidytemplate

Config/testthat/edition 3

Encoding UTF-8

Language en-US

LazyData true

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

1

https://rstudio.github.io/learnr/
https://pkgs.rstudio.com/gradethis/
https://rstudio.github.io/learnr/
https://github.com/rstudio/gradethis
https://github.com/rstudio/gradethis/issues

2 code_feedback

Repository https://inqs909.r-universe.dev

RemoteUrl https://github.com/rstudio/gradethis

RemoteRef HEAD

RemoteSha 502af700437db1b648a35200ce7b940db0cc3d45

Contents

code_feedback . 2
debug_this . 7
fail_if_code_feedback . 9
fail_if_error . 12
graded . 14
gradethis_equal . 18
gradethis_error_checker . 19
gradethis_exercise_checker . 20
gradethis_setup . 22
grade_this . 25
grade_this-objects . 28
grade_this_code . 30
mock_this_exercise . 33
pass_if . 35
pass_if_equal . 37
pipe_warning . 42
praise . 43
user_object . 44
with_exercise . 47

Index 48

code_feedback Provide automated code feedback

Description

Generate a message describing the first instance of a code mismatch. Three functions are provided
for working with code feedback: code_feedback() does the comparison and returns a character
description of the mismatch, or a NULL if no differences are found. maybe_code_feedback() is de-
signed to be used inside fail() and related graded() messages, as in "{maybe_code_feedback()}".
And give_code_feedback() gives you a way to add code feedback to any fail() message in a
grade_this() or grade_result() checking function.

code_feedback 3

Usage

code_feedback(
user_code = .user_code,
solution_code = .solution_code_all,
user_env = .envir_result,
solution_env = .envir_solution,
...,
allow_partial_matching = getOption("gradethis.allow_partial_matching", TRUE)

)

maybe_code_feedback(
user_code = get0(".user_code", parent.frame()),
solution_code = get0(".solution_code_all", parent.frame()),
user_env = get0(".envir_result", parent.frame(), ifnotfound = parent.frame()),
solution_env = get0(".envir_solution", parent.frame(), ifnotfound = parent.frame()),
...,
allow_partial_matching = getOption("gradethis.allow_partial_matching", TRUE),
default = "",
before = getOption("gradethis.maybe_code_feedback.before", " "),
after = getOption("gradethis.maybe_code_feedback.after", NULL),
space_before = deprecated(),
space_after = deprecated()

)

give_code_feedback(
expr,
...,
env = parent.frame(),
location = c("after", "before")

)

Arguments

user_code, solution_code
String containing user or solution code. By default, when used in grade_this(),
.user_code is retrieved for the .user_code. solution_code may also be a list
containing multiple solution variations, so by default in grade_this() .solu-
tion_code_all is found and used for solution_code. You may also use .solution_code
if there is only one solution.

user_env Environment used to standardize formals of the user code. Defaults to retrieving
.envir_result from the calling environment. If not found, the parent.frame()
will be used.

solution_env Environment used to standardize formals of the solution code. Defaults to re-
trieving .envir_solution from the calling environment. If not found, the parent.frame()
will be used.

... Ignored in code_feedback() and maybe_code_feedback(). In give_code_feedback(),
... are passed to maybe_code_feedback().

4 code_feedback

allow_partial_matching

A logical. If FALSE, the partial matching of argument names is not allowed and
e.g. runif(1, mi = 0) will return a message indicating that the full formal name
min should be used. The default is set via the gradethis.allow_partial_matching
option, or by gradethis_setup().

default Default value to return if no code feedback is found or code feedback can be
provided.

before, after Strings to be added before or after the code feedback message to ensure the
message is properly formatted in your feedback.

space_before, space_after
Deprecated. Use before and after.

expr A grading function — like grade_this() or grade_result() — or a charac-
ter string. The code feedback will be appended to the message of any incorrect
grades using maybe_code_feedback(), set to always include the code feed-
back, if possible. If expr is a character string, "{maybe_code_feedback()}" is
pasted into the string, without customization.

env Environment used to standardize formals of the user and solution code. Defaults
to retrieving .envir_result and .envir_solution from parent.frame().

location Should the code feedback message be added before or after?

Value

• code_feedback() returns a character value describing the difference between the student’s
submitted code and the solution. If no discrepancies are found, code_feedback() returns
NULL.

• maybe_code_feedback() always returns a string for safe use in glue strings. If no discrepan-
cies are found, it returns an empty string.

• give_code_feedback() catches fail() grades and adds code feedback to the feedback mes-
sage using maybe_code_feedback().

Functions

• code_feedback(): Determine code feedback by comparing the user’s code to the solution.

• maybe_code_feedback(): Return code_feedback() result when possible. Useful when set-
ting default fail() glue messages. For example, if there is no solution, no code feedback will
be given.

• give_code_feedback(): Appends maybe_code_feedback() to the message generated by
incorrect grades.

Code differences

There are many different ways that code can be different, yet still the same. Here is how we detect
code differences:

1. If the single values are different. Ex: log(2) vs log(3)

2. If the function call is different. Ex: log(2) vs sqrt(2)

code_feedback 5

3. Validate the user code can be standardized via rlang::call_standardise(). The env pa-
rameter is important for this step as gradethis does not readily know about user defined func-
tions. Ex: read.csv("file.csv") turns into read.csv(file = "file.csv")

4. If multiple formals are matched. Ex: read.csv(f = "file.csv") has f match to file and
fill.

5. Verify that every named argument in the solution appears in the user code. Ex: If the solution
is read.csv("file.csv", header = TRUE), header must exist.

6. Verify that the user did not supply extra named arguments to Ex: mean(x = 1:10, na.rm
= TRUE) vs mean(x = 1:10)

7. Verify that every named argument in the solution matches the value of the corresponding user
argument. Ex: read.csv("file.csv", header = TRUE) vs read.csv("file.csv", header
= FALSE)

8. Verify that the remaining arguments of the user and solution code match in order and value.
Ex: mean(1:10, 0.1) vs mean(1:10, 0.2)

Examples

code_feedback() --

Values are same, so no differences found
code_feedback("log(2)", "log(2)")

Functions are different
code_feedback("log(2)", "sqrt(2)")

Standardize argument names (no differences)
code_feedback("read.csv('file.csv')", "read.csv(file = 'file.csv')")

Partial matching is not allowed
code_feedback("read.csv(f = 'file.csv')", "read.csv(file = 'file.csv')")

Feedback will spot differences in argument values...
code_feedback(

"read.csv('file.csv', header = FALSE)",
"read.csv('file.csv', header = TRUE)"

)

...or when arguments are expected to appear in a call...
code_feedback("mean(1:10)", "mean(1:10, na.rm = TRUE)")

...even when the expected argument matches the function's default value
code_feedback("read.csv('file.csv')", "read.csv('file.csv', header = TRUE)")

Unstandardized arguments will match by order and value
code_feedback("mean(1:10, 0.1)", "mean(1:10, 0.2)")

give_code_feedback() ---

We'll use this example of an incorrect exercise submission throughout

6 code_feedback

submission_wrong <- mock_this_exercise(
.user_code = "log(4)",
.solution_code = "sqrt(4)"

)

To add feedback to *any* incorrect grade,
wrap the entire `grade_this()` call in `give_code_feedback()`:
grader <-

```{r example-check}
give_code_feedback(grade_this({
pass_if_equal(.solution, "Good job!")
if (.result < 2) {

fail("Too low!")
}
fail()

}))
```

grader(submission_wrong)

Or you can wrap the message of any fail() directly:
grader <-

```{r example-check}
grade_this({
pass_if_equal(.solution, "Good job!")
if (.result < 2) {

fail(give_code_feedback("Too low!"))
}
fail()

})
```

grader(submission_wrong)

Typically, grade_result() doesn't include code feedback
grader <-

```{r example-check}
grade_result(
fail_if(~ round(.result, 0) != 2, "Not quite!")

)
```

grader(submission_wrong)

But you can use give_code_feedback() to append code feedback
grader <-

```{r example-check}
give_code_feedback(grade_result(
fail_if(~ round(.result, 0) != 2, "Not quite!")

))
```

grader(submission_wrong)

The default `grade_this_code()` `incorrect` message always adds code feedback,
so be sure to remove \"{maybe_code_feedback()}\" from the incorrect message
grader <-

debug_this 7

```{r example-check}
give_code_feedback(grade_this_code(incorrect = "{random_encouragement()}"))

```

grader(submission_wrong)

debug_this Debug an exercise submission

Description

When used in a *-check chunk or inside grade_this(), debug_this() displays in the learnr
tutorial a complete listing of the variables and environment available for checking. This can be
helpful when you need to debug an exercise and a submission.

Usage

debug_this(check_env = parent.frame())

Arguments

check_env A grade checking environment. You can use mock_this_exercise() to prepare
a mocked exercise submission environment. Otherwise, you don’t need to use
or set this argument.

Value

Returns a neutral grade containing a message that includes any and all information available about
the exercise and the current submission. The output lets you visually explore the objects available
for use within your grade_this() grading code.

Debugging exercises

debug_this() gives you a few ways to see the objects that are available inside grade_this() for
you to use when grading exercise submissions. Suppose we have this example exercise:

```{r example-setup}
x <- 1
```

```{r example, exercise = TRUE}
# user submits
y <- 2
x + y
```

```{r example-solution}
x + 3
```


8 debug_this

Always debug:
The first method is the most straight-forward. Inside the *-check or *-error-check chunks for
your exercise, simply call debug_this():

```{r example-check}
debug_this()
```

Every time you submit code for feedback via Submit Answer, the debug information will be
printed.

Debug specific cases:
On the other hand, if you want to debug a specific submission, such as a case where a submission
isn’t matching any of your current grading conditions, you can call debug_this() wherever you
like inside grade_this().

```{r example-check}
grade_this({
pass_if_equal(3, "Good work?")

# debug the submission if it is somehow equal to 2
if (.result == 2) {
debug_this()

}
})
```

Debug default fail condition:
It’s common to have the grade-checking code default to an incorrect grade with code feedback
by calling fail() at the end of the checking code in grade_this(). During development of a
tutorial, you may want to have this default fail() return the debugging information rather than a
failure.
By setting the global option gradethis.fail to use debug_this(),

```{r setup}
library(learnr)
library(gradethis)
gradethis_setup()

option(gradethis.fail = "{debug_this()}")
```

you can see the values that are available to you during the submission check whenever your test
submissions pass through your other checks.

```{r example-check}
grade_this({
pass_if_equal(3, "Good work?")

fail()
})
```


fail_if_code_feedback 9

Don’t forget to reset or unset the gradethis.fail option when you’re done working on your
tutorial.

Examples

Suppose we have an exercise (guess the number 42). Mock a submission:
submission <- mock_this_exercise(.user_code = 40, .solution_code = 11 + 31)

Call `debug_this()` inside your *-check chunk, is equivalent to
debug_this()(submission)$message

The remaining examples produce equivalent output
Not run:
Or you can call `debug_this()` inside a `grade_this()` call
at the point where you want to get debug feedback.
grade_this({

pass_if_equal(42, "Good stuff!")

Find out why this is failing??
debug_this()

})(submission)

Set default `fail()` message to show debug information
(for tutorial development only!)
old_opts <- options(gradethis.fail = "{debug_this()}")

grade_this({
pass_if_equal(42, "Good stuff!")

fail()
})(submission)

default fail() will show debug until you reset gradethis.fail option
options(old_opts)

End(Not run)

fail_if_code_feedback Signal a failing grade if mistakes are detected in the submitted code

Description

fail_if_code_feedback() uses code_feedback() to detect if there are differences between the
user’s submitted code and the solution code (if available). If the exercise does not have an associated
solution, or if there are no detected differences between the user’s and the solution code, no grade
is returned.

See graded() for more information on gradethis grade-signaling functions.

10 fail_if_code_feedback

Usage

fail_if_code_feedback(
message = NULL,
user_code = .user_code,
solution_code = .solution_code_all,
...,
env = parent.frame(),
hint = TRUE,
encourage = getOption("gradethis.fail.encourage", FALSE),
allow_partial_matching = getOption("gradethis.allow_partial_matching", TRUE)

)

Arguments

message A character string of the message to be displayed. In all grading helper functions
other than graded(), message is a template string that will be processed with
glue::glue().

user_code, solution_code
String containing user or solution code. By default, when used in grade_this(),
.user_code is retrieved for the .user_code. solution_code may also be a list
containing multiple solution variations, so by default in grade_this() .solu-
tion_code_all is found and used for solution_code. You may also use .solution_code
if there is only one solution.

... Arguments passed on to graded

correct A logical value of whether or not the checked code is correct.
type,location The type and location of the feedback object provided to

learnr. See https://rstudio.github.io/learnr/exercises.html#Custom_
checking for more details.
type may be one of "auto", "success", "info", "warning", "error", or "cus-
tom".
location may be one of "append", "prepend", or "replace".

env Environment used to standardize formals of the user and solution code. Defaults
to retrieving .envir_result and .envir_solution from parent.frame().

hint Include a code feedback hint with the failing message? This argument only
applies to fail() and fail_if_equal() and the message is added using the
default options of give_code_feedback() and maybe_code_feedback(). The
default value of hint can be set using gradethis_setup() or the gradethis.fail.hint
option.

encourage Include a random encouraging phrase with random_encouragement()? The de-
fault value of encourage can be set using gradethis_setup() or the gradethis.fail.encourage
option.

allow_partial_matching

A logical. If FALSE, the partial matching of argument names is not allowed and
e.g. runif(1, mi = 0) will return a message indicating that the full formal name
min should be used. The default is set via the gradethis.allow_partial_matching
option, or by gradethis_setup().

https://rstudio.github.io/learnr/exercises.html#Custom_checking
https://rstudio.github.io/learnr/exercises.html#Custom_checking

fail_if_code_feedback 11

Value

Signals an incorrect grade with feedback if there are differences between the submitted user code
and the solution code. If solution code is not available, no grade is returned.

See Also

Other grading helper functions: graded(), pass(), fail(), pass_if(), fail_if(), pass_if_equal(),
fail_if_equal().

Examples

Suppose the exercise prompt is to generate 5 random numbers, sampled from
a uniform distribution between 0 and 1. In this exercise, you know that
you shouldn't have values outside of the range of 0 or 1, but you'll
otherwise need to check the submitted code to know that the student has
chosen the correct sampling function.

grader <-
```{r example-check}
grade_this({
fail_if(length(.result) != 5, "I expected 5 numbers.")
fail_if(

any(.result < 0 | .result > 1),
"I expected all numbers to be between 0 and 1."

)

Specific checks passed, but now we want to check the code.
fail_if_code_feedback()

All good!
pass()

})
```

.solution_code <- "
```{r example-check}

runif(5)
```

"

Not 5 numbers...
grader(mock_this_exercise(runif(1), !!.solution_code))

Not within [0, 1]...
grader(mock_this_exercise(rnorm(5), !!.solution_code))

Passes specific checks, but hard to tell so check the code...
grader(mock_this_exercise(runif(5, 0.25, 0.75), !!.solution_code))
grader(mock_this_exercise(rbinom(5, 1, 0.5), !!.solution_code))

Perfect!
grader(mock_this_exercise(runif(n = 5), !!.solution_code))

12 fail_if_error

fail_if_error Fail if grading code produces an error

Description

When grading code involves unit-style testing, you may want to use testthat expectation function to
test the user’s submitted code. In these cases, to differentiate between expected errors and internal
errors indicative of issues with the grading code, gradethis requires that authors wrap assertion-
style tests in fail_if_error(). This function catches any errors and converts them into fail()
grades. It also makes the error and its message available for use in the message glue string as
.error and .error_message respectively.

Usage

fail_if_error(
expr,
message = "{.error_message}",
...,
env = parent.frame(),
hint = TRUE,
encourage = getOption("gradethis.fail.encourage", FALSE)

)

Arguments

expr An expression to evaluate that whose errors are safe to be converted into failing
grades with fail().

message A glue string containing the feedback message to be returned to the user. Ad-
ditional .error and .error_message objects are made available for use in the
message.

... Additional arguments passed to graded() or additional data to be included in
the feedback object.

env environment to evaluate the glue message. Most users of gradethis will not
need to use this argument.

hint Include a code feedback hint with the failing message? This argument only
applies to fail() and fail_if_equal() and the message is added using the
default options of give_code_feedback() and maybe_code_feedback(). The
default value of hint can be set using gradethis_setup() or the gradethis.fail.hint
option.

encourage Include a random encouraging phrase with random_encouragement()? The de-
fault value of encourage can be set using gradethis_setup() or the gradethis.fail.encourage
option.

fail_if_error 13

Value

If an error occurs while evaluating expr, the error is returned as a fail() grade. Otherwise, no
value is returned.

See Also

Other grading helper functions: graded(), pass(), fail(), pass_if(), fail_if(), pass_if_equal(),
fail_if_equal().

Examples

The user is asked to add 2 + 2, but they take a shortcut
ex <- mock_this_exercise("'4'")

Normally, grading code with an author error returns an internal problem grade
grade_author_mistake <- grade_this({

if (identical(4)) {
pass("Great work!")

}
fail()

})(ex)

This returns a "problem occurred" grade
grade_author_mistake
...that also includes information about the error (not shown to users)
grade_author_mistake$error

But sometimes we'll want to use unit-testing helper functions where we know
that an error is indicative of a problem in the users' code
grade_this({

fail_if_error({
testthat::expect_length(.result, 1)
testthat::expect_true(is.numeric(.result))
testthat::expect_equal(.result, 4)

})
pass("Good job!")

})(ex)

Note that you don't need to reveal the error message to the user
grade_this({

fail_if_error(
message = "Your result isn't a single numeric value.",
{

testthat::expect_length(.result, 1)
testthat::expect_true(is.numeric(.result))
testthat::expect_equal(.result, 4)

}
)
pass("Good job!")

})(ex)

14 graded

graded Signal a final grade for a student’s submission

Description

graded() is used to signal a final grade for a submission. Most likely, you’ll want to use its helper
functions: pass(), fail(), pass_if_equal(), fail_if_equal(), pass_if() and fail_if().
When used in grade_this(), these functions signal a final grade and no further checking of the
student’s submitted code is performed. See the sections below for more details about how these
functions are used in grade_this().

Usage

graded(correct, message = NULL, ..., type = NULL, location = NULL)

pass(
message = getOption("gradethis.pass", "Correct!"),
...,
env = parent.frame(),
praise = getOption("gradethis.pass.praise", FALSE)

)

fail(
message = getOption("gradethis.fail", "Incorrect"),
...,
env = parent.frame(),
hint = getOption("gradethis.fail.hint", FALSE),
encourage = getOption("gradethis.fail.encourage", FALSE)

)

Arguments

correct A logical value of whether or not the checked code is correct.

message A character string of the message to be displayed. In all grading helper functions
other than graded(), message is a template string that will be processed with
glue::glue().

... Additional arguments passed to graded() or additional data to be included in
the feedback object.

type, location The type and location of the feedback object provided to learnr. See https:
//rstudio.github.io/learnr/exercises.html#Custom_checking for more
details.
type may be one of "auto", "success", "info", "warning", "error", or "custom".
location may be one of "append", "prepend", or "replace".

env environment to evaluate the glue message. Most users of gradethis will not
need to use this argument.

https://rstudio.github.io/learnr/exercises.html#Custom_checking
https://rstudio.github.io/learnr/exercises.html#Custom_checking

graded 15

praise Include a random praising phrase with random_praise()? The default value of
praise can be set using gradethis_setup() or the gradethis.pass.praise
option.

hint Include a code feedback hint with the failing message? This argument only
applies to fail() and fail_if_equal() and the message is added using the
default options of give_code_feedback() and maybe_code_feedback(). The
default value of hint can be set using gradethis_setup() or the gradethis.fail.hint
option.

encourage Include a random encouraging phrase with random_encouragement()? The de-
fault value of encourage can be set using gradethis_setup() or the gradethis.fail.encourage
option.

Value

pass() signals a correct submission, fail() signals an incorrect submission, and graded() returns
a correct or incorrect submission according to the value of correct.

Functions

• graded(): Prepare and signal a graded result.

• pass(): Signal a passing grade.

• fail(): Signal a failing grade.

Usage in grade_this()

The graded() helper functions are all designed to be called from within grade_this(), but this
has the unfortunate side-effect of making their default arguments somewhat opaque.

The helper functions follow these common patterns:

1. If you don’t provide a custom message, the default pass or fail messages will be used. With the
default gradethis setup, the pass message follows the pattern {gradethis::random_praise()} Correct!
, and the fail message follows Incorrect.{gradethis::maybe_code_feedback()} {gradethis::random_encouragement()}.
You can set the default message pattern using the pass and fail in gradethis_setup(), or
the options gradethis.pass and gradethis.fail.
In the custom message, you can use glue::glue() syntax to reference any of the available
variables in grade_this() or that you’ve created in your checking code: e.g. "Your table
has {nrow(.result)} rows.".

2. pass_if_equal() and fail_if_equal() automatically compare their first argument against
the .result of running the student’s code. pass_if_equal() takes this one step further and
if called without any arguments will compare the .result to the value returned by evaluating
the .solution code, if available.

3. All fail helper functions have an additional hint parameter. If hint = TRUE, a code feedback
hint is added to the custom message. You can also control hint globally with gradethis_setup().

4. All helper functions include an env parameter, that you can generally ignore. It’s used in-
ternally to help pass() and fail() et al. find the default argument values and to build the
message using glue::glue().

16 graded

Return a grade immediately

graded() and its helper functions are designed to short-circuit further evaluation whenever they
are called. If you’re familiar with writing functions in R, you can think of graded() (and pass(),
fail(), etc.) as a special version of return(). If a grade is created, it is returned immediately and
no more checking will be performed.

The immediate return behavior can be helpful when you have to perform complicated or long-
running tests to determine if a student’s code submission is correct. We recommend that you per-
form the easiest tests first, progressing to the most complicated tests. By taking advantage of early
grade returns, you can simplify your checking code:

```{r}
grade_this({
# is the answer a tibble?
if (!inherits(.result, "tibble")) {
fail("Your answer should be a tibble.")

}

# from now on we know that .result is a tibble...
if (nrow(.result) != 5 && ncol(.result) < 2) {
fail("Your table should have 5 rows and more than 1 column.")

}

# ...and now we know it has 5 rows and at least 2 columns
if (.result[[2]][[5]] != 5) {
fail("The value of the 5th row of the 2nd column should be 5.")

}

# all of the above checks have passed now.
pass()

})
```

Notice that it’s important to choose a final fallback grade as the last value in your grade_this()
checking code. This last value is the default grade that will be given if the submission passes all
other checks. If you’re using the standard gradethis_setup() and you call pass() or fail()
without arguments, pass() will return a random praising phrase and fail() will return code feed-
back (if possible) with an encouraging phrase.

See Also

Other grading helper functions: graded(), pass(), fail(), pass_if(), fail_if(), pass_if_equal(),
fail_if_equal().

Examples

Suppose our exercise asks the student to prepare and execute code that
returns the value `42`. We'll use `grade_this()` to check their
submission.

graded 17

#
Because we are demonstrating these functions inside R documentation, we'll
save the function returned by `grade_this()` as `grader()`. Calling
`grader()` on a mock exercise submission is equivalent to running the
check code when the student clicks "Submit Answer" in a learnr tutorial.

grader <-
```{r example-check}
grade_this({
Automatically use .result to compare to an expected value
pass_if_equal(42, "Great work!")

Similarly compare .result to an expected wrong value
fail_if_equal(41, "You were so close!")
fail_if_equal(43, "Oops, a little high there!")

or automatically pass if .result is equal to .solution
pass_if_equal(message = "Great work!")

Be explicit if you need to round to avoid numerical accuracy issues
pass_if_equal(x = round(.result), y = 42, "Close enough!")
fail_if_equal(x = round(.result), y = 64, "Hmm, that's not right.")

For more complicated calculations, call pass() or fail()
if (.result > 100) {

fail("{.result} is way too high!")
}
if (.result * 100 == .solution) {

pass("Right answer, but {.result} is two orders of magnitude too small.")
}

Fail with a hint if student code differs from the solution
(Skipped automatically if there isn't a -solution chunk)
fail_if_code_feedback()

Choose a default grade if none of the above have resulted in a grade
fail()

})
```

Now lets try with a few different student submissions ----

Correct!
grader(mock_this_exercise(.user_code = 42))

These were close...
grader(mock_this_exercise(.user_code = 41))
grader(mock_this_exercise(.user_code = 43))

Automatically use .solution if you have a *-solution chunk...
grader(mock_this_exercise(.user_code = 42, .solution_code = 42))

Floating point arithmetic is tricky...

18 gradethis_equal

grader(mock_this_exercise(.user_code = 42.000001, .solution_code = 42))
grader(mock_this_exercise(.user_code = 64.123456, .solution_code = 42))

Complicated checking situations...
grader(mock_this_exercise(.user_code = 101, .solution_code = 42))
grader(mock_this_exercise(.user_code = 0.42, .solution_code = 42))

Finally fall back to the final answer...
grader(mock_this_exercise(.user_code = "20 + 13", .solution_code = "20 + 22"))

gradethis_equal Compare the values of two objects to check whether they are equal

Description

Compare the values of two objects to check whether they are equal

Usage

gradethis_equal(x = .result, y = .solution, ...)

Default S3 method:
gradethis_equal(x, y, tolerance = sqrt(.Machine$double.eps), ...)

S3 method for class 'list'
gradethis_equal(x, y, tolerance = sqrt(.Machine$double.eps), ...)

Arguments

x, y Two objects to compare

... Additional arguments passed to methods

tolerance If non-NULL, used as threshold for ignoring small floating point difference when
comparing numeric vectors. Using any non-NULL value will cause integer and
double vectors to be compared based on their values, not their types, and will
ignore the difference between NaN and NA_real_.
It uses the same algorithm as all.equal(), i.e., first we generate x_diff and
y_diff by subsetting x and y to look only locations with differences. Then
we check that mean(abs(x_diff - y_diff)) / mean(abs(y_diff)) (or just
mean(abs(x_diff - y_diff)) if y_diff is small) is less than tolerance.

Value

A logical value of length one, or an internal gradethis error.

Methods (by class)

• gradethis_equal(default): The default comparison method, which uses waldo::compare

• gradethis_equal(list): The comparison method for lists

gradethis_error_checker 19

Examples

gradethis_equal(mtcars[mtcars$cyl == 6,], mtcars[mtcars$cyl == 6,])
gradethis_equal(mtcars[mtcars$cyl == 6,], mtcars[mtcars$cyl == 4,])

gradethis_error_checker

An error checking function for use with learnr

Description

learnr uses the checking code in exercise.error.check.code when the user’s submission pro-
duces an error during evaluation. gradethis_error_checker() provides default error checking
suitable for most situations where an error was not expected.

If a solution for the exercise is available, the user’s submission will be compared to the example
solution and the message to the student will include code feedback. Otherwise, the error message
from R is returned.

If you are expecting the user to submit code that throws an error, use the *-error-check chunk to
write custom grading code that validates that the correct error was created.

Usage

gradethis_error_checker(
...,
hint = getOption("gradethis.fail.hint", TRUE),
message = getOption("gradethis.error_checker.message", NULL),
encourage = getOption("gradethis.fail.encourage", FALSE)

)

Arguments

... Ignored but included for future compatibility.

hint Include a code feedback hint with the failing message? This argument only
applies to fail() and fail_if_equal() and the message is added using the
default options of give_code_feedback() and maybe_code_feedback(). The
default value of hint can be set using gradethis_setup() or the gradethis.fail.hint
option.

message The feedback message when an error occurred and no solution is provided for
the exercise. May reference .error or any of the grade_this-objects. The default
value is set by gradethis_setup().

encourage Include a random encouraging phrase with random_encouragement()? The de-
fault value of encourage can be set using gradethis_setup() or the gradethis.fail.encourage
option.

Value

A checking function compatible with gradethis_exercise_checker().

20 gradethis_exercise_checker

See Also

gradethis_setup(), gradethis_exercise_checker()

Examples

The default error checker is run on an exercise that produces an error.
In the following example, the object `b` is not defined.

This is the error that the user's submission creates:
tryCatch(

b,
error = function(e) message(e$message)

)

If you haven't provided a model solution:
gradethis_error_checker()(mock_this_exercise(b))

If a model solution is available:
gradethis_error_checker()(mock_this_exercise(b, a))

gradethis_exercise_checker

A checker function to use with learnr

Description

For exercise checking, learnr tutorials require a function that learnr can use in the background to
run the code in each "-check" chunk and to format the results into a format that learnr can display.
To enable exercise checking in your learnr tutorial, attach gradethis with library(gradethis),
or call gradethis_setup() in the setup chunk of your tutorial. See gradethis_demo() to see an
example learnr document that uses gradethis_exercise_checker().

Usage

gradethis_exercise_checker(
label = NULL,
solution_code = NULL,
user_code = NULL,
check_code = NULL,
envir_result = NULL,
evaluate_result = NULL,
envir_prep = NULL,
last_value = NULL,
stage = NULL,
...,
solution_eval_fn = NULL

)

gradethis_exercise_checker 21

Arguments

label Label for exercise chunk

solution_code Code provided within the "-solution" chunk for the exercise.

user_code R code submitted by the user

check_code Code provided within the "-check" (or "-code-check") chunk for the exercise.

envir_result The R environment after the execution of the chunk.
evaluate_result

The return value from the evaluate::evaluate function.

envir_prep A copy of the R environment before the execution of the chunk.

last_value The last value from evaluating the user’s exercise submission.

stage The current stage of exercise checking.

... Extra arguments supplied by learnr
solution_eval_fn

A function taking solution code and an envir (an environment equivalent to
envir_prep) and that will return the value of the evaluated code. This callback
function allows grading authors to write custom solution evaluation functions
for non-R exercise engines. The result of the evaluated code should be an R
object that will be accessible to the grading code in .solution or .solution_all.
You may also provide a named list of solution evaluation functions to the gradethis.exercise_checker.solution_eval_fn
global option. The names of the list should match the exercise engine for which
the function should be applied.
For example, for a hypothetical exercise engine echo that simply echoes the
user’s code, you could provide a solution_eval_fn that also just echoes the
solution code:

options(
gradethis.exercise_checker.solution_eval_fn = list(
echo = function(code, envir) {
code

}
)

)

Solution evaluation functions should determine if the solution code is missing
and if so throw an error with class error_missing_solution (see rlang::abort()
for help throwing this error).

Value

Returns a feedback object suitable for learnr tutorials with the results of the exercise grading code.

See Also

gradethis_setup(), grade_this(), grade_this_code()

22 gradethis_setup

Examples

Not run:
gradethis_demo()

End(Not run)

gradethis_setup Setup gradethis for use within learnr

Description

To use gradethis in your learnr tutorial, you only need to call library(gradethis) in your tuto-
rial’s setup chunk.

```{r setup}
library(learnr)
library(gradethis)
```

Use gradethis_setup() to change the default options suggested by gradethis. This function also
describes in detail each of the global options available for customization in the gradethis package.
Note that you most likely do not want to change the defaults values for the learnr tutorial options
that are prefixed with exercise.. Each of the gradethis-specific arguments sets a global option
with the same name, prefixed with gradethis.. For example, pass sets gradethis.pass.

Usage

gradethis_setup(
pass = NULL,
fail = NULL,
...,
code_correct = NULL,
code_incorrect = NULL,
maybe_code_feedback = NULL,
maybe_code_feedback.before = NULL,
maybe_code_feedback.after = NULL,
pass.praise = NULL,
fail.hint = NULL,
fail.encourage = NULL,
pipe_warning = NULL,
grading_problem.message = NULL,
grading_problem.type = NULL,
error_checker.message = NULL,
allow_partial_matching = NULL,
exercise.checker = gradethis_exercise_checker,
exercise.timelimit = NULL,

gradethis_setup 23

compare_timelimit = NULL,
exercise.error.check.code = NULL,
fail_code_feedback = NULL

)

Arguments

pass Default message for pass(). Sets options("gradethis.pass")

fail Default message for fail(). Sets options("gradethis.fail")

... Arguments passed on to learnr::tutorial_options

exercise.cap Caption for exercise chunk (defaults to the engine’s icon or the
combination of the engine and " code").

exercise.eval Whether to pre-evaluate the exercise so the reader can see
some default output (defaults to FALSE).

exercise.lines Lines of code for exercise editor (defaults to the number of
lines in the code chunk).

exercise.blanks A regular expression to be used to identify blanks in sub-
mitted code that the user should fill in. If TRUE (default), blanks are three
or more underscores in a row. If FALSE, blank checking is not performed.

exercise.completion Use code completion in exercise editors.
exercise.diagnostics Show diagnostics in exercise editors.
exercise.startover Show "Start Over" button on exercise.
exercise.reveal_solution Whether to reveal the exercise solution if a solu-

tion chunk is provided.

code_correct Default correct message for grade_this_code(). If unset, grade_this_code()
falls back to the value of the gradethis.pass option. Sets the gradethis.code_correct
option.

code_incorrect Default incorrect message for grade_this_code(). If unset grade_this_code()
falls back to the value of the gradethis.fail option. Sets the gradethis.code_incorrect
option.

maybe_code_feedback

Logical TRUE or FALSE to determine whether maybe_code_feedback() should
return code feedback, where if FALSE, maybe_code_feedback() will return an
empty string. maybe_code_feedback() is used in the default messages when
pass() or fail() are called without any arguments, which are set by the pass
or fail arguments of gradethis_setup().

maybe_code_feedback.before, maybe_code_feedback.after
Text that should be added before or after the maybe_code_feedback() out-
put, if any is returned. Sets the default values of the before and after argu-
ments of maybe_code_feedback().

pass.praise Logical TRUE or FALSE to determine whether a praising phrase should be au-
tomatically prepended to any pass() or pass_if_equal() messages. Sets the
gradethis.pass.praise option.

fail.hint Logical TRUE or FALSE to determine whether an automated code feedback hint
should be shown with a fail() or fail_if_equal() message. Sets the gradethis.fail.hint
option.

24 gradethis_setup

fail.encourage Logical TRUE or FALSE to determine whether an encouraging phrase should be
automatically appended to any fail() or fail_if_equal() messages. Sets the
gradethis.fail.encourage option.

pipe_warning The default message used in pipe_warning(). Sets the gradethis.pipe_warning
option.

grading_problem.message

The feedback message used when a grading error occurs. Sets the gradethis.grading_problem.message
option.

grading_problem.type

The feedback type used when a grading error occurs. Must be one of "success",
"info", "warning" (default), "error", or "custom". Sets the gradethis.grading_problem.type
option.

error_checker.message

The default message used by gradethis’s default error checker, gradethis_error_checker().
Sets the gradethis.error_checker.message option.

allow_partial_matching

Logical TRUE or FALSE to determine whether partial matching is allowed in
grade_this_code(). Sets the gradethis.allow_partial_matching option.

exercise.checker

Function used to check exercise answers (e.g., gradethis::grade_learnr()).
exercise.timelimit

Number of seconds to limit execution time to (defaults to 30).
compare_timelimit

pass_if_equal() and fail_if_equal() call waldo::compare() internally.
This helps ensure an accurate comparison, but sometimes takes a long time.
compare_timelimit is the time limit in seconds for the execution of waldo::compare()
(defaults to 80% of exercise.timelimit). If the time limit is exceeded, identical()
is used instead of waldo::compare().

exercise.error.check.code

A string containing R code to use for checking code when an exercise evaluation
error occurs (e.g., "gradethis::grade_code()").

fail_code_feedback

Deprecated. Use maybe_code_feedback.

Value

Invisibly returns the global options as they were prior to setting them with gradethis_setup().

Global package options

These global package options can be set by gradethis_setup() or by directly setting the global
option. The default values set for each option when gradethis is loaded are shown below.

Option Default Value
gradethis.pass "{gradethis::random_praise()} Correct!"
gradethis.pass.praise FALSE
gradethis.fail "Incorrect.{gradethis::maybe_code_feedback()} {gradethis::random_encouragement()}"

grade_this 25

gradethis.fail.hint FALSE
gradethis.fail.encourage FALSE
gradethis.maybe_code_feedback TRUE
gradethis.maybe_code_feedback.before " "
gradethis.maybe_code_feedback.after NULL
gradethis.code_correct NULL
gradethis.code_incorrect "{gradethis::pipe_warning()}{gradethis::code_feedback()} {gradethis::random_encouragement()}"
gradethis.pipe_warning "I see that you are using pipe operators (e.g. %>%), so I want to let you know that this is how I am interpreting your code before I check it:\n\n“‘r\n{.user_code_unpiped}\n“‘\n\n"
gradethis.grading_problem.message "A problem occurred with the grading code for this exercise."
gradethis.grading_problem.type "warning"
gradethis.allow_partial_matching NULL
gradethis.error_checker.message "An error occurred with your code:\n\n“‘\n{.error$message}\n“‘\n\n\n"
gradethis.compare_timelimit NULL

See Also

gradethis_exercise_checker()

Examples

Not run in package documentation because this function changes global opts
if (FALSE) {

old_opts <- gradethis_setup(
pass = "Great work!",
fail = "{random_encouragement()}"

)
}

Use getOption() to see the default value
getOption("gradethis.pass")
getOption("gradethis.maybe_code_feedback")

grade_this Grade a student’s submission using custom logic

Description

grade_this() allows instructors to write custom logic to evaluate, grade and give feedback to
students. To use grade_this(), call it directly in your *-check chunk:

```{r example-check}
grade_this({
# custom checking code appears here
if (identical(.result, .solution)) {
pass("Great work!")

}
fail("Try again!")



26 grade_this

})
```

grade_this() makes available a number of objects based on the exercise and the student’s submis-
sion that can be used to evaluate the student’s submitted code. See ?"grade_this-objects" for
more information about these objects.

As the instructor, you are free to use any logic to determine a student’s grade as long as a graded()
object is signaled. The check code can also contain testthat expectation code. Failed testthat
expectations will be turned into fail()ed grades with the corresponding message.

A final grade is signaled from grade_this() using the graded() helper functions, which include
pass(), fail(), among others. grade_this() uses condition handling to short-circuit further
evaluation when a grade is reached. This means that you may also signal a failing grade using any
of the expect_*() functions from testthat, other functions designed to work with testthat, such as
checkmate, or standard R errors via stop(). Learn more about this behavior in graded() in the
section Return a grade immediately.

Usage

grade_this(
expr,
...,
maybe_code_feedback = getOption("gradethis.maybe_code_feedback", TRUE)

)

Arguments

expr The grade-checking expression to be evaluated. This expression must either
signal a grade via pass() or fail() functions or their sibling functions.
By default, errors in this expression are converted to "internal problem" grades
that mask the error for the user. If your grading logic relies on unit-test-styled
functions, such as those from testthat, you can use fail_if_error() to convert
errors into fail() grades.

... Ignored
maybe_code_feedback

Should maybe_code_feedback() provide code feedback when used in a graded()
message? The default value can be set with gradethis_setup().
Typically, maybe_code_feedback() is called in the default fail() message
(the default can be customized the fail argument of gradethis_setup()). If
the maybe_code_feedback argument is FALSE, maybe_code_feedback() re-
turns an empty string.

Value

Returns a function whose first parameter will be an environment containing objects specific to the
exercise and submission (see Available variables). For local testing, you can create a version of
the expected environment for a mock exercise submission with mock_this_exercise(). Calling
the returned function on the exercise-checking environment will evaluate the grade-checking expr
and return a final grade via graded().

grade_this 27

See Also

grade_this_code(), mock_this_exercise(), gradethis_demo()

Examples

For an interactive example run: gradethis_demo()

Suppose we have an exercise that prompts students to calculate the
average height of Loblolly pine trees using the `Loblolly` data set.
We might write an exercise `-check` chunk like the one below.
#
Since grade_this() returns a function, we'll save the result of this
"chunk" as `grader()`, which can be called on an exercise submission
to evaluate the student's code, which we'll simulate with
`mock_this_exercise()`.

grader <-
```{r example-check}
grade_this({
if (length(.result) != 1) {

fail("I expected a single value instead of {length(.result)} values.")
}

if (is.na(.result)) {
fail("I expected a number, but your code returned a missing value.")

}

avg_height <- mean(Loblolly$height)
if (identical(.result, avg_height)) {

pass("Great work! The average height is {round(avg_height, 2)}.")
}

Always end grade_this() with a default grade.
By default fail() will also give code feedback,
if a solution is available.
fail()

})
```

Simulate an incorrect answer: too many values...
grader(mock_this_exercise(.user_code = Loblolly$height[1:2]))

This student submission returns a missing value...
grader(mock_this_exercise(mean(Loblolly$Seed)))
This student submission isn't caught by any specific tests,
the final grade is determined by the default (last) value in grade_this()
grader(mock_this_exercise(mean(Loblolly$age)))

If you have a *-solution chunk,
fail() without arguments gives code feedback...
grader(

mock_this_exercise(

28 grade_this-objects

.user_code = mean(Loblolly$age),

.solution_code = mean(Loblolly$height)
)

)

Finally, the "student" gets the correct answer!
grader(mock_this_exercise(mean(Loblolly$height)))

grade_this-objects Checking environment objects for use in grade_this()

Description

grade_this() allows instructors to determine a grade and to create custom feedback messages
using custom R code. To facilitate evaluating the exercise, grade_this() makes available a number
of objects that can be referenced within the { ... } expression.

All of the objects provided by learnr to an exercise checking function are available for inspection.
To avoid name collisions with user or instructor code, the names of these objects all start with ..

• .label: The exercise label.
• .engine: The exercise engine, typically ’r’.
• .last_value: The last value returned from evaluating the user’s exercise submission.
• .solution_code: A string containing the code provided within the *-solution chunk for

the exercise.
• .user_code: A string containing the code submitted by the user.
• .check_code: A string containing the code provided within the *-check or *-code-check

chunk for the exercise.
• .envir_prep: A copy of the R environment after running the exercise setup code and before

the execution of the student’s submitted code.
• .envir_result: The R environment after running the student’s submitted code.
• .envir_solution: The R environment after running the solution code.
• .evaluate_result: The return value from the evaluate::evaluate() function (see learnr’s

documentation).
• .stage: The current checking stage in the learnr exercise evaluation lifecycle: ’code_check’,

’error_check’, or ’check’

In addition, gradethis has provided some extra objects:

• .user, .result: The last value returned from evaluating the user’s exercise submission.
• .solution: The last value returned from evaluating the .solution_code for the exercise

(evaluated in .envir_prep).
• .solution_all: A list containing all solutions when multiple solutions are provided in the
*-solution chunk for the exercise. Solutions are separated by header comments, e.g. # base_r ----.

• .solution_code_all: A list containing the code of all solutions when multiple solutions
are provided in the *-solution chunk for the exercise. Solutions are separated by header
comments, e.g. # base_r ----.

grade_this-objects 29

Usage

.result

.user

.last_value

.solution

.solution_all

.user_code

.solution_code

.solution_code_all

.envir_prep

.envir_result

.envir_solution

.evaluate_result

.label

.stage

.engine

Format

An object of class .result (inherits from gradethis_placeholder) of length 0.

An object of class .user (inherits from .result, gradethis_placeholder) of length 0.

An object of class .last_value (inherits from .result, gradethis_placeholder) of length 0.

An object of class .solution (inherits from gradethis_placeholder) of length 0.

An object of class .solution_all (inherits from gradethis_placeholder) of length 0.

An object of class .user_code (inherits from gradethis_placeholder) of length 0.

An object of class .solution_code (inherits from gradethis_placeholder) of length 0.

An object of class .solution_code_all (inherits from gradethis_placeholder) of length 0.

An object of class .envir_prep (inherits from gradethis_placeholder) of length 0.

An object of class .envir_result (inherits from gradethis_placeholder) of length 0.

An object of class .envir_solution (inherits from gradethis_placeholder) of length 0.

An object of class .evaluate_result (inherits from gradethis_placeholder) of length 0.

30 grade_this_code

An object of class .label (inherits from gradethis_placeholder) of length 0.

An object of class .stage (inherits from gradethis_placeholder) of length 0.

An object of class .engine (inherits from gradethis_placeholder) of length 0.

grade_this_code Grade student code against a solution

Description

grade_this_code() compares student code to a solution (i.e. model code) and describes the
first way in which the student code differs. If the student code exactly matches the solution,
grade_this_code() returns a customizable success message (correct). If the student code does
not match the solution, a customizable incorrect message (incorrect) can also be provided.

In most cases, to use grade_this_code(), ensure that your exercise has a -solution chunk:

```{r example-solution}
sqrt(log(1))
```

Then, call grade_this_code() in your exercise’s -check or -code-check chunk:

```{r example-check}
grade_this_code()
```

If grade_this_code() is called in a -code-check chunk and returns feedback, either passing or
failing feedback, then the user’s code is not executed. If you want the user to see the output of
their code, call grade_this_code() in the -check chunk. You can also use grade_this_code()
as a pre-check to avoid running code when it fails or passes by calling grade_this_code() inside
the -code-check chunk and setting action = "pass" or action = "fail" to only return feedback
when the user’s code passes or fails, respectively. (Note: requires learnr version 0.10.1.9017 or
later.)

Learn more about how to use grade_this_code() in the Details section below.

Usage

grade_this_code(
correct = getOption("gradethis.code_correct", getOption("gradethis.pass", "Correct!")),
incorrect = getOption("gradethis.code_incorrect", getOption("gradethis.fail",
"Incorrect")),

...,
allow_partial_matching = getOption("gradethis.allow_partial_matching", TRUE),
action = c("both", "pass", "fail")

)

grade_this_code 31

Arguments

correct A glue-able character string to display if the student answer matches a known
correct answer.

incorrect A glue-able character string to display if the student answer does not match the
known correct answer. Use code_feedback() in this string to control the place-
ment of the auto-generated feedback message produced by comparing the stu-
dent’s submission with the solution. Use a string that doesn’t include code_feedback()
to grade the student’s code without providing feedback.

... Ignored
allow_partial_matching

A logical. If FALSE, the partial matching of argument names is not allowed and
e.g. runif(1, mi = 0) will return a message indicating that the full formal name
min should be used. The default is set via the gradethis.allow_partial_matching
option, or by gradethis_setup().

action The action to take:

1. "pass" provide passing correct feedback when the user’s code matches
the solution code.

2. "fail" provide failing incorrect feedback when the user’s code does not
match the solution code.

3. "both" always provide passing or failing feedback.

Value

Returns a function whose first parameter will be an environment containing objects specific to the
exercise and submission (see Available variables). For local testing, you can create a version of
the expected environment for a mock exercise submission with mock_this_exercise(). Calling
the returned function on the exercise-checking environment will evaluate the grade-checking expr
and return a final grade via graded().

Details

grade_this_code() only inspects for code differences between the student’s code and the solution
code. The final result of the student code and solution code is ignored. See the Code differences
section of code_feedback() for implementation details on how code is determined to be different.

You can call grade_this_code() in two ways:

1. If you want to check the student’s code without evaluating it, call grade_this_code() in the
*-code-check chunk.

2. To return grading feedback in along with the resulting output of the student’s code, call
grade_this_code() in the *-check chunk of the exercise.

To provide the solution code, include a *-solution code chunk in the learnr document for the
exercise to be checked. When used in this way, grade_this_code() will automatically find and
use the student’s submitted code — .user_code in grade_this() — as well as the solution code
— .solution_code in grade_this().

32 grade_this_code

Custom messages

You can customize the correct and incorrect messages shown to the user by grade_this_code().
Both arguments accept template strings that are processed by glue::glue(). If you provide a cus-
tom template string, it completely overwrites the default string, but you can include the components
used by the default message by adding them to your custom message.

There are four helper functions used in the default messages that you may want to include in your
custom messages. To use the output of any of the following, include them inside braces in the
template string. For example use {code_feedback()} to add the code feedback to your custom
incorrect message.

1. code_feedback(): Adds feedback about the first observed difference between the student’s
submitted code and the model solution code. If you want to grade the student’s code without
providing feedback, leave code_feedback() out of your string.

2. pipe_warning(): Informs the user that their code was unpiped prior to comparison. This
message is included by default to help clarify cases when the code feedback makes more
sense in the unpiped context.

3. random_praise() and random_encouragement(): These praising and encouraging mes-
sages are included by default in correct and incorrect grades, by default.

See Also

code_feedback(), grade_this(), mock_this_exercise()

Examples

For an interactive example run: gradethis_demo()

These are manual examples, see grading demo for `learnr` tutorial usage

grade_this_code()(
mock_this_exercise(
.user_code = "sqrt(log(2))", # user submitted code
.solution_code = "sqrt(log(1))" # from -solution chunk

)
)

grade_this_code()(
mock_this_exercise(

user submitted code
.user_code = "runif(1, 0, 10)",
from -solution chunk
.solution_code = "runif(n = 1, min = 0, max = 1)"

)
)

By default, grade_this_code() informs the user that piped code is unpiped
when comparing to the solution
grade_this_code()(

mock_this_exercise(
user submitted code

mock_this_exercise 33

.user_code = "storms %>% select(year, month, hour)",
from -solution chunk
.solution_code = "storms %>% select(year, month, day)"

)
)

By setting `correct` or `incorrect` you can change the default message
grade_this_code(

correct = "Good work!",
incorrect = "Not quite. {code_feedback()} {random_encouragement()}"

)(
mock_this_exercise(
user submitted code
.user_code = "storms %>% select(year, month, hour)",
from -solution chunk
.solution_code = "storms %>% select(year, month, day)"

)
)

mock_this_exercise Mock a user submission to an exercise

Description

This function helps you test your grade_this() and grade_this_code() logic by helping you
quickly create the environment that these functions expect when used to grade a user submission to
an exercise in a learnr tutorial.

Usage

mock_this_exercise(
.user_code,
.solution_code = NULL,
...,
.label = "mock",
.engine = "r",
.stage = "check",
.result = rlang::missing_arg(),
setup_global = NULL,
setup_exercise = NULL

)

Arguments

.user_code A single string or expression in braces representing the user submission to this
exercise.

.solution_code An optional single string or expression in braces representing the solution code
to this exercise.

34 mock_this_exercise

... Ignored

.label The label of the mock exercise, defaults to "mock".

.engine The engine of the mock exercise. If the engine is not "r", then .result must be
provided explicitly since mock_this_exercise() cannot evaluate the .user_code.

.stage The stage of the exercise evaluation, defaults to "check". learnr stages are
"code_check", "check" or "error_check". When gradethis is used outside of
learnr, this variable is typically NULL.

.result The result of the evaluation of the .user_code. If the .engine is "r", the result
will be prepared automatically by evaluating the user code.

setup_global An optional single string or expression in braces representing the global setup
chunk code.

setup_exercise An optional single string or expression in braces representing the code in the
exercise’s setup chunk(s).

Value

Returns the checking environment that is expected by grade_this() and grade_this_code().
Both of these functions themselves return a function that gets called on the checking environment.
In other words, the object returned by this function can be passed to the function returned from
either grade_this() or grade_this_code() to test the grading logic used in either.

Examples

First we'll create a grading function with grade_this(). The user's code
should return the value 42, and we have some specific messages if they're
close but miss this target. Otherwise, we'll fall back to the default fail
message, which will include code feedback.
this_grader <-

grade_this({
pass_if_equal(42, "Great Work!")
fail_if_equal(41, "You were so close!")
fail_if_equal(43, "Oops, just missed!")
fail()

})

Our first mock submission is almost right...
this_grader(mock_this_exercise(.user_code = 41, .solution_code = 42))

Our second mock submission is a little too high...
this_grader(mock_this_exercise(.user_code = 43, .solution_code = 42))

A third submission takes an unusual path, but arrives at the right answer.
Notice that you can use braces around an expression.
this_grader(

mock_this_exercise(
.user_code = {

x <- 31
y <- 11
x + y

pass_if 35

},
.solution_code = 42

)
)

Our final submission changes the prompt slightly. Suppose we have provided
an `x` object in our global setup with a value of 31. We also have a `y`
object that we create for the user in the exercise setup chunk. We then ask
the student to add `x` and `y`. What happens if the student subtracts
instead? That's what this mock submission tests:
this_grader(

mock_this_exercise(
.user_code = x - y,
.solution_code = x + y,
setup_global = x <- 31,
setup_exercise = y <- 11

)
)

pass_if Signal a passing or failing grade if a condition is TRUE

Description

pass_if() and fail_if() both create passing or failing grades if a given condition is TRUE. See
graded() for more information on gradethis grade-signaling functions.

These functions are also used in legacy gradethis code, in particular in the superseded function
grade_result(). While previous versions of gradethis allowed the condition to be determined by
a function or formula, when used in grade_this() the condition must be a logical TRUE or FALSE.

Usage

pass_if(
cond,
message = NULL,
...,
env = parent.frame(),
praise = getOption("gradethis.pass.praise", FALSE),
x = deprecated()

)

fail_if(
cond,
message = NULL,
...,
env = parent.frame(),
hint = getOption("gradethis.fail.hint", FALSE),
encourage = getOption("gradethis.fail.encourage", FALSE),

36 pass_if

x = deprecated()
)

Arguments

cond A logical value or an expression that will evaluate to a TRUE or FALSE value. If
the value is TRUE, or would be considered TRUE in an if (cond) statement, then
a passing or failing grade is returned to the user.

message A character string of the message to be displayed. In all grading helper functions
other than graded(), message is a template string that will be processed with
glue::glue().

... Passed to graded() in grade_this().

env environment to evaluate the glue message. Most users of gradethis will not
need to use this argument.

praise Include a random praising phrase with random_praise()? The default value of
praise can be set using gradethis_setup() or the gradethis.pass.praise
option.

x Deprecated. Replaced with cond.

hint Include a code feedback hint with the failing message? This argument only
applies to fail() and fail_if_equal() and the message is added using the
default options of give_code_feedback() and maybe_code_feedback(). The
default value of hint can be set using gradethis_setup() or the gradethis.fail.hint
option.

encourage Include a random encouraging phrase with random_encouragement()? The de-
fault value of encourage can be set using gradethis_setup() or the gradethis.fail.encourage
option.

Value

pass_if() and fail_if() signal a correct or incorrect grade if the provided condition is TRUE.

Functions

• pass_if(): Pass if cond is TRUE.

• fail_if(): Fail if cond is TRUE.

See Also

Other grading helper functions: graded(), pass(), fail(), pass_if(), fail_if(), pass_if_equal(),
fail_if_equal().

Examples

Suppose the prompt is to find landmasses in `islands` with land area of
less than 20,000 square miles. (`islands` reports land mass in units of
10,000 sq. miles.)

pass_if_equal 37

grader <-
```{r example-check}
grade_this({
fail_if(any(is.na(.result)), "You shouldn't have missing values.")

diff_len <- length(.result) - length(.solution)
fail_if(diff_len < 0, "You missed {abs(diff_len)} island(s).")
fail_if(diff_len > 0, "You included {diff_len} too many islands.")

pass_if(all(.result < 20), "Great work!")

Fall back grade
fail()

})
```

.solution <-
```{r example-solution}
islands[islands < 20]

```

Peek at the right answer
.solution

Has missing values somehow
grader(mock_this_exercise(islands["foo"], !!.solution))

Has too many islands
grader(mock_this_exercise(islands[islands < 29], !!.solution))

Has too few islands
grader(mock_this_exercise(islands[islands < 16], !!.solution))

Just right!
grader(mock_this_exercise(islands[islands < 20], !!.solution))

pass_if_equal Signal a passing or failing grade if two values are equal

Description

pass_if_equal(), fail_if_equal(), and fail_if_not_equal() are three graded() helper func-
tions that signal a passing or a failing grade based on the whether two values are equal. They are
designed to easily compare the returned value of the student’s submitted code with the value re-
turned by the solution or another known value:

• Each function finds and uses .result as the default for x, the first item in the comparison.
.result is the last value returned from the user’s submitted code.

• pass_if_equal() additionally finds and uses .solution as the default expected value y.

See graded() for more information on gradethis grade-signaling functions.

38 pass_if_equal

Usage

pass_if_equal(
y = .solution,
message = getOption("gradethis.pass", "Correct!"),
x = .result,
...,
env = parent.frame(),
tolerance = sqrt(.Machine$double.eps),
praise = getOption("gradethis.pass.praise", FALSE)

)

fail_if_equal(
y,
message = getOption("gradethis.fail", "Incorrect"),
x = .result,
...,
env = parent.frame(),
tolerance = sqrt(.Machine$double.eps),
hint = getOption("gradethis.fail.hint", FALSE),
encourage = getOption("gradethis.fail.encourage", FALSE)

)

fail_if_not_equal(
y,
message = getOption("gradethis.fail", "Incorrect"),
x = .result,
...,
env = parent.frame(),
tolerance = sqrt(.Machine$double.eps),
hint = getOption("gradethis.fail.hint", FALSE),
encourage = getOption("gradethis.fail.encourage", FALSE)

)

Arguments

y The expected value against which x is compared using gradethis_equal(x,
y).
In pass_if_equal(), if no value is provided, the exercise .solution (i.e. the
result of evaluating the code in the exercise’s *-solution chunk) will be used
for the comparison.
If the exercise uses multiple solutions with different results, set y = .solution_all.
In this case, pass_if_equal() will test each of the solutions and provide a pass-
ing grade if x matches any values contained in y. Note that if the exercise has
multiple solutions but they all return the same result, it will be faster to use the
default value of y = .solution.

message A character string of the message to be displayed. In all grading helper functions
other than graded(), message is a template string that will be processed with
glue::glue().

pass_if_equal 39

x First item in the comparison. By default, when used inside grade_this(), x
is automatically assigned the value of .result — in other words the result of
running the student’s submitted code. x is not the first argument since you will
often want to compare the final value of the student’s submission against a spe-
cific value, y.

... Additional arguments passed to graded()

env environment to evaluate the glue message. Most users of gradethis will not
need to use this argument.

tolerance If non-NULL, used as threshold for ignoring small floating point difference when
comparing numeric vectors. Using any non-NULL value will cause integer and
double vectors to be compared based on their values, not their types, and will
ignore the difference between NaN and NA_real_.
It uses the same algorithm as all.equal(), i.e., first we generate x_diff and
y_diff by subsetting x and y to look only locations with differences. Then
we check that mean(abs(x_diff - y_diff)) / mean(abs(y_diff)) (or just
mean(abs(x_diff - y_diff)) if y_diff is small) is less than tolerance.

praise Include a random praising phrase with random_praise()? The default value of
praise can be set using gradethis_setup() or the gradethis.pass.praise
option.

hint Include a code feedback hint with the failing message? This argument only
applies to fail() and fail_if_equal() and the message is added using the
default options of give_code_feedback() and maybe_code_feedback(). The
default value of hint can be set using gradethis_setup() or the gradethis.fail.hint
option.

encourage Include a random encouraging phrase with random_encouragement()? The de-
fault value of encourage can be set using gradethis_setup() or the gradethis.fail.encourage
option.

Value

Returns a passing or failing grade if x and y are equal.

Functions

• pass_if_equal(): Signal a passing grade only if x and y are equal.

• fail_if_equal(): Signal a failing grade only if x and y are equal.

• fail_if_not_equal(): Signal a failing grade if x and y are not equal.

Comparing with Multiple Solutions

If your exercise includes multiple solutions that are variations of the same task — meaning that all
solutions achieve the same result — you can call pass_if_equal() without changing any defaults
to compare the result of the student’s submission to the common solution result. After checking if
any solution matches, you can perform additional checks or you can call fail() with the default
message or with hint = TRUE. fail() will automatically provide code feedback for the most likely
solution.

40 pass_if_equal

By default, pass_if_equal() will compare .result with .solution, or the final value returned by
the entire -solution chunk (in other words, the last solution). This default behavior covers both
exercises with a single solution and exercises with multiple solutions that all return the same value.

When your exercise has multiple solutions with different results, pass_if_equal() can compare
the student’s .result to each of the solutions in .solution_all, returning a passing grade when the
result matches any of the values returned by the set of solutions. You can opt into this behavior by
calling

pass_if_equal(.solution_all)

Note that this causes pass_if_equal() to evaluate each of the solutions in the set, and may increase
the computation time.

Here’s a small example. Suppose an exercise asks students to filter mtcars to include only cars with
the same number of cylinders. Students are free to pick cars with 4, 6, or 8 cylinders, and so your
-solution chunk would include this code (ignoring the ex_solution variable, the chunk would
contain the code in the string below):

ex_solution <- "
four cylinders ----
mtcars[mtcars$cyl == 4,]

six cylinders ----
mtcars[mtcars$cyl == 6,]

eight cylinders ----
mtcars[mtcars$cyl == 8,]
"

In the -check chunk, you’d call grade_this() and ask pass_if_equal() to compare the student’s
.result to .solution_all (all the solutions).

ex_check <- grade_this({
pass_if_equal(
y = .solution_all,
message = "The cars in your result all have {.solution_label}!"

)

fail()
})

What happens when a student submits one of these solutions? This function below mocks the
process of a student submitting an attempt.

student_submits <- function(code) {
withr::local_seed(42)
submission <- mock_this_exercise(!!code, !!ex_solution)
ex_check(submission)

}

pass_if_equal 41

If they submit code that returns one of the three possible solutions, they receive positive feedback.

student_submits("mtcars[mtcars$cyl == 4,]")
#> <gradethis_graded: [Correct]
#> The cars in your result all have four cylinders!
#> >
student_submits("mtcars[mtcars$cyl == 6,]")
#> <gradethis_graded: [Correct]
#> The cars in your result all have six cylinders!
#> >

Notice that the solution label appears in the feedback message. When pass_if_equal() picks a
solution as correct, three variables are made available for use in the glue string provided to message:

• .solution_label: The heading label of the matching solution

• .solution_code: The code of the matching solution

• .solution: The value of the evaluated matching solution code

If the student submits incorrect code, pass_if_equal() defers to later grading code.

student_submits("mtcars[mtcars$cyl < 8,]")
#> <gradethis_graded: [Incorrect]
#> Incorrect. In `mtcars[mtcars$cyl < 8,]`, I expected you to call `==`
#> where you called `<`. Please try again.
#> >

Here, because fail() provides code_feedback() by default, and because code_feedback() is
also aware of the multiple solutions for this exercise, the code feedback picks the eight cylinders
solution and gives advice based on that particular solution.

See Also

Other grading helper functions: graded(), pass(), fail(), pass_if(), fail_if(), pass_if_equal(),
fail_if_equal().

Examples

Suppose our prompt is to find the cars in `mtcars` with 6 cylinders...

grader <-
```{r example-check}
grade_this({
Automatically pass if .result equal to .solution
pass_if_equal()

fail_if_equal(mtcars[mtcars$cyl == 4,], message = "Not four cylinders")
fail_if_equal(mtcars[mtcars$cyl == 8,], message = "Not eight cylinders")

Default to failing grade with feedback
fail()

42 pipe_warning

})
```

.solution <-
```{r example-solution}
mtcars[mtcars$cyl == 6,]

```

Correct!
grader(mock_this_exercise(mtcars[mtcars$cyl == 6,], !!.solution))

These fail with specific messages
grader(mock_this_exercise(mtcars[mtcars$cyl == 4,], !!.solution))
grader(mock_this_exercise(mtcars[mtcars$cyl == 8,], !!.solution))

This fails with default feedback message
grader(mock_this_exercise(mtcars[mtcars$mpg == 8,], !!.solution))

pipe_warning Inform the user about how gradethis interprets piped code

Description

Creates a warning message when user code contains the %>%. When feedback is automatically
generated via code_feedback() or in grade_this_code(), this message attempts to contextualize
feedback that might make more sense when referenced against an un-piped version of the student’s
code.

Usage

pipe_warning(message = getOption("gradethis.pipe_warning"), .user_code = NULL)

Arguments

message A glue string containing the message. The default value is set with the gradethis.pipe_warning
option.

.user_code The user’s submitted code, found in env if NULL

Value

Returns a string containing the pipe warning message, or an empty string if the .user_code does
not contain a pipe, if the .user_code is also empty, or if the message is NULL.

Options

• gradethis.pipe_warning: The default pipe warning message is set via this option.

praise 43

Glue Variables

The following variables may be used in the glue-able message:

• .user_code: The student’s original submitted code.

• .user_code_unpiped: The unpiped version of the student’s submitted code.

Examples

The default `pipe_warning()` message:
getOption("gradethis.pipe_warning")

Let's consider two versions of the user code
user_code <- "penguins %>% pull(year) %>% min(year)"
user_code_unpiped <- "min(pull(penguins, year), year)"

A `pipe_warning()` is created when the user's code contains `%>%`
pipe_warning(.user_code = user_code)

And no message is created when the user's code in un-piped
pipe_warning(.user_code = user_code_unpiped)

Typically, this warning is only introduced when giving code feedback
for an incorrect submission. Here we didn't expect `year` in `min()`.
submission <- mock_this_exercise(

.user_code = !!user_code,

.solution_code = "penguins %>% pull(year) %>% min()"
)

grade_this_code()(submission)

praise Random praise and encouragement

Description

Generate a random praise or encouragement phrase. These functions are designed for use within
pass() or fail() messages, or anywhere else that gradethis provides feedback to the student.

Usage

random_praise()

random_encouragement()

give_praise(expr, ..., location = "before", before = NULL, after = NULL)

give_encouragement(expr, ..., location = "after", before = NULL, after = NULL)

44 user_object

Arguments

expr A graded() grade or helper function, or a grading function — like grade_this()
or grade_result() — or a character string. Praise will be added to any passing
grades and encouragement will be added to any failing grade. If expr is a char-
acter string, then "{random_praise()}" or "{random_encouragement()}" is
pasted before or after the string according to location.

... Ignored.

location Should the praise or encouragement be added before or after the grade message?

before, after Text to be added before or after the praise or encouragement phrase.

Value

• random_praise() and random_encouragement() each return a length-one string with a
praising or encouraging phrase.

• give_praise() and give_encouragement() add praise or encouragement phrases to passing
and failing grades, respectively.

Functions

• random_praise(): Random praising phrase

• random_encouragement(): Random encouraging phrase

• give_praise(): Add praising message to a passing grade.

• give_encouragement(): Add encouraging message to a failing grade.

Examples

replicate(5, glue::glue("Random praise: {random_praise()}"))
replicate(5, glue::glue("Random encouragement: {random_encouragement()}"))

give_praise() adds praise to passing grade messages
give_praise(pass("That's absolutely correct."))

give_encouragement() encouragement to failing grade messages
give_encouragement(fail("Sorry, but no."))

user_object Functions for interacting with objects created by student and solution
code

Description

Functions for interacting with objects created by student and solution code

user_object 45

Usage

user_object_get(x, mode = "any", ..., check_env = parent.frame())

solution_object_get(x, mode = "any", ..., check_env = parent.frame())

user_object_exists(x, mode = "any", ..., check_env = parent.frame())

solution_object_exists(x, mode = "any", ..., check_env = parent.frame())

user_object_list(
mode = "any",
exclude_envir = .envir_prep,
...,
check_env = parent.frame()

)

solution_object_list(
mode = "any",
exclude_envir = .envir_prep,
...,
check_env = parent.frame()

)

Arguments

x An object name, given as a quoted character string.

mode character specifying the mode of objects to consider. Passed to exists and get.

exclude_envir An environment. Objects that appear in exclude_envir will be excluded from
results. Defaults to .envir_prep. Use exclude_envir = NULL to include all
objects.

... Additional arguments passed to underlying functions:

• For user_object_exists() and solution_object_exists(), exists()
• For user_object_get() and solution_object_get(), get()
• For user_object_list() and solution_object_list(), ls.str()

check_env The environment from which to retrieve .envir_result and .envir_prep.
Most users of gradethis will not need to use this argument.

Value

For user_object_get() and solution_object_get(), the object. If the object is not found, an
error.

For user_object_exists() and solution_object_exists(), a TRUE/FALSE value.

For user_object_list() and solution_object_list(), a character vector giving the names of
the objects created by the student or solution code.

46 user_object

Examples

user_code <- quote({
```{r example}
x <- "I'm student code!"
y <- list(1, 2, 3)
z <- function() print("Hello World!")
```

})

solution_code <- quote({
```{r example-solution}
x <- "I'm solution code!"
y <- list("a", "b", "c")
z <- function() print("Goodnight Moon!")
```

})

exercise <- mock_this_exercise(!!user_code, !!solution_code)

with_exercise(exercise, user_object_list())
with_exercise(exercise, user_object_exists("x"))
with_exercise(exercise, user_object_get("x"))

with_exercise(exercise, solution_object_list())
with_exercise(exercise, solution_object_exists("x"))
with_exercise(exercise, solution_object_get("x"))

Use `mode` to find only objects of a certain type ----

with_exercise(exercise, user_object_list(mode = "character"))
with_exercise(exercise, user_object_list(mode = "list"))
with_exercise(exercise, user_object_list(mode = "function"))

with_exercise(exercise, user_object_exists("x", mode = "character"))
with_exercise(exercise, user_object_exists("y", mode = "character"))

with_exercise(exercise, user_object_get("z", mode = "function"))

By default, `user_object_list()` ignores objects created by setup chunks ----

setup_code <- rlang::expr({
```{r example-setup}
setup_data <- mtcars
```

})

setup_exercise <- mock_this_exercise(
!!user_code, !!solution_code, setup_exercise = !!setup_code

)

with_exercise(setup_exercise, user_object_list())

with_exercise 47

You can disable this by setting `exclude_envir = NULL` ----

with_exercise(setup_exercise, user_object_list(exclude_envir = NULL))

with_exercise Run an expression as if it were in an exercise’s grade_this() block

Description

This function is not intended to be used within grading code, but may be helpful for testing grading
code.

Usage

with_exercise(exercise, expr)

Arguments

exercise An exercise, as created by mock_this_exercise()

expr An unquoted expression

Value

The value of grade_this(<expr>)(exercise)

Examples

exercise <- mock_this_exercise(.user_code = "2", .solution_code = "1 + 1")

with_exercise(exercise, pass_if_equal())
with_exercise(exercise, fail_if_code_feedback())

Index

∗ datasets
grade_this-objects, 28

.engine (grade_this-objects), 28

.envir_prep, 45

.envir_prep (grade_this-objects), 28

.envir_result, 3, 4, 10, 45

.envir_result (grade_this-objects), 28

.envir_solution, 3, 4, 10

.envir_solution (grade_this-objects), 28

.evaluate_result (grade_this-objects),
28

.label (grade_this-objects), 28

.last_value (grade_this-objects), 28

.result, 40

.result (grade_this-objects), 28

.solution, 21, 40

.solution (grade_this-objects), 28

.solution_all, 21, 40

.solution_all (grade_this-objects), 28

.solution_code (grade_this-objects), 28

.solution_code_all, 3, 10

.solution_code_all
(grade_this-objects), 28

.stage (grade_this-objects), 28

.user (grade_this-objects), 28

.user_code, 3, 10

.user_code (grade_this-objects), 28

all.equal(), 18, 39

character, 45
code_feedback, 2
code_feedback(), 9, 31, 32, 41, 42

debug_this, 7
default message, 39

environment, 45
evaluate::evaluate(), 28
exists, 45

exists(), 45

fail (graded), 14
fail(), 2, 4, 11–13, 16, 23, 24, 26, 36, 39, 41,

43
fail_if (pass_if), 35
fail_if(), 11, 13, 16, 36, 41
fail_if_code_feedback, 9
fail_if_equal (pass_if_equal), 37
fail_if_equal(), 11, 13, 16, 23, 24, 36, 41
fail_if_error, 12
fail_if_error(), 26
fail_if_not_equal (pass_if_equal), 37
FALSE, 45

get, 45
get(), 45
give_code_feedback (code_feedback), 2
give_code_feedback(), 10, 12, 15, 19, 36, 39
give_encouragement (praise), 43
give_praise (praise), 43
glue::glue(), 10, 14, 15, 32, 36, 38
grade_result(), 2, 4, 35, 44
grade_this, 25
grade_this(), 2–4, 7, 8, 10, 14–16, 21, 28,

31–36, 39, 40, 44
grade_this-objects, 19, 28
grade_this_code, 30
grade_this_code(), 21, 23, 27, 33, 34, 42
graded, 10, 14
graded(), 2, 9–11, 13, 14, 16, 26, 31, 35–39,

41
gradethis_demo(), 27
gradethis_equal, 18
gradethis_error_checker, 19
gradethis_error_checker(), 24
gradethis_exercise_checker, 20
gradethis_exercise_checker(), 19, 20, 25
gradethis_setup, 22

48

INDEX 49

gradethis_setup(), 4, 10, 12, 15, 16, 19–21,
23, 24, 26, 31, 36, 39

learnr::tutorial_options, 23
logical, 18
ls.str(), 45

maybe_code_feedback (code_feedback), 2
maybe_code_feedback(), 4, 10, 12, 15, 19,

23, 26, 36, 39
mock_this_exercise, 33
mock_this_exercise(), 7, 26, 27, 31, 32, 47
mode, 45

parent.frame(), 3, 4, 10
pass (graded), 14
pass(), 11, 13, 16, 23, 26, 36, 41, 43
pass_if, 35
pass_if(), 11, 13, 16, 36, 41
pass_if_equal, 37
pass_if_equal(), 11, 13, 16, 23, 24, 36, 41
pipe_warning, 42
pipe_warning(), 24, 32
praise, 43

random_encouragement (praise), 43
random_encouragement(), 10, 12, 15, 19, 32,

36, 39
random_praise (praise), 43
random_praise(), 15, 32, 36, 39
rlang::abort(), 21
rlang::call_standardise(), 5

solution_object_exists (user_object), 44
solution_object_get (user_object), 44
solution_object_list (user_object), 44

TRUE, 45

user_object, 44
user_object_exists (user_object), 44
user_object_get (user_object), 44
user_object_list (user_object), 44

waldo::compare, 18
waldo::compare(), 24
with_exercise, 47

	code_feedback
	debug_this
	fail_if_code_feedback
	fail_if_error
	graded
	gradethis_equal
	gradethis_error_checker
	gradethis_exercise_checker
	gradethis_setup
	grade_this
	grade_this-objects
	grade_this_code
	mock_this_exercise
	pass_if
	pass_if_equal
	pipe_warning
	praise
	user_object
	with_exercise
	Index

